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Abstract
We have found that for variety of composite materials there is a domain
of universal behaviour of the effective conductivity σeff . This domain
can be qualitatively characterized as a range of ‘low contrast’ of the
components (0.2 � σ1/σ2 � 5). In the domain of the universality the
equation σeff ≈ exp(

∑
ni ln σi) gives a good approximation for σeff of all

the investigated regular structures (2D and 3D composites, two and three
component composites, isotropic and anisotropic composites, composites with
equal and different concentrations of components) as well for random random
media (ZBLAN20 glass-forming melt). Equally these results are valid for the
thermal conductivity and diffusivity of the composite media.

1. Introduction

Earlier we studied both physical [1] and mathematical [2] (include a review of the problem)
features of regular symmetric composites. In this paper we generalize our consideration to
the case of anisotropic and non-symmetric composites. We have found that for a variety of
composite materials there is a domain of a universal behaviour of the effective conductivity σeff .
This domain can be qualitatively characterized as a range of ‘low contrast’ of the components.
For this domain of the universality we suggest a formula which gives a very good approximation
for the effective conductivities of all the investigated structures. Equally these results are valid
for the thermal conductivity and diffusivity of the composite media.

In section 2 we consider the qualitive foundation for the suggested ‘universal’ formula.
In section 3 we test it for the variety of regular composite structures (two dimensional (2D)
and three dimensional (3D) composites, two and three component composites, isotropic and
anisotropic composites, composites with equal and different concentration of components—
see figure 1). In section 4 we check up the suggested formula for random media using
experimental conductivity and density data on ZBLAN20 (0.53ZrF4–0.20BaF2–0.04LaF3–
0.03AlF3–0.20NaF, [3]) glass-forming liquid. Conclusions are presented in section 5.
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Figure 1. 2D regular isotropic and anisotropic structures investigated in the present work. Captions
denote the nickname of the computer code.

2. Qualitive foundation

In 1970 Dykhne [4] found an exact analytical solution for the effective conductivity σeff of a
2D checker board (figure 1(a)).

σeff = √
σ1σ2 (1)

where σ1 and σ2 are the conductivities of the white and black squares respectively. The result
of equation (1) is equally valid for a triangular 2D lattice (figure 1(b)) and any random isotropic
distribution of black and white spots of arbitrary shape until their surface concentrations are
equal.

Let us consider the infinite 2D checker board whereby ‘black’ and ‘white’ squares of this
board are not uniform. Let the ‘white’ squares be in their turn checker boards (not infinite)
of ‘green’ and ‘blue’ squares (with conductivities σ1 and σ2 respectively); and let the ‘black’
squares be checker boards (not infinite) of ‘red’ and ‘yellow’ squares (with conductivities σ3

and σ4 respectively). In this case σ1 ≈ √
σ1σ2, σ2 ≈ √

σ3σ4 and σeff ≈ 4
√
σ1σ2σ3σ4.

This construction is illustrated in figure 2(a). Instead of the sign ‘equal’ we have used
‘approximately equal’ because of the finite (not infinite) size of ‘blue–green’ and ‘red–yellow’
checker boards. The larger the number of squares in these boards, the more accurate the
equations are. Such a construction physically corresponds to the presence of different length
scales: medium range order, short range order etc.

Repeating this construction a number of times leads to the following expression:

σeff ≈ σ
n1
1 σ

n2
2 · · · σnii · · · (2)
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Figure 2. (a) Schematic illustration of the multi-disperse model. The white and black squares
of the left checker board are not homogeneous. They in their turn are also checker boards (right
part). (b) Schematic presentation of the probability density of the local conductivity for validity of
equation (3) in the 2D case.

where ni is the concentration of components. For figure 2(a) all ni are equal to 1/4. But if some
of the σi are equal to each other, different values for ni follow. The analogous consideration
is valid for a triangular lattice or a random isotropic distribution of arbitrary spots.

Let us look at a similar problem: the conductivity of the surface σ = σ(x, y) depends
smoothly on the local coordinates (x, y). In this case ν(σ )�σ is the probability of the
conductivity at the arbitrary point to be within the interval from σ to σ + �σ . It has been
shown by Dykhne [4] that the exact expression for the effective conductivity is going to be
given by

ln σeff =
∫
ν(σ )d(ln σ) (3)

under conditions that the effective conductivity of the infinite surface is isotropic and the
probability density ν as a function of ln σ is symmetric. Figure 2(b) presents schematically
some of the possible cases. Solid bars correspond to the case of a two coloured square,
triangular or random array of spots. The dashed curves correspond to the cases of some smooth
conductivity distributions. Tortet et al [5] have successfully used the rectangular distribution
(figure 2(b), dotted lines) of the active part of the conductivity to describe the impedance data
on composite (‘brushite’) material.
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Both cases (see equations (2) and (3)) give the same dependence for the effective
conductivity σeff . Therefore, one can introduce the interpolation formula σ0 for the effective
conductivity σeff ≈ σ0:

σ0 = exp

( ∑
i

ni ln σi

)
(4)

where ni is the surface or volume fraction of the ith component; σi is the conductivity of the
ith component.

In the next sections we investigate the domain of validity of equation (4). We show that
this equation gives a very good approximation for the effective conductivity in the case of
small difference between the partial conductivities (further on we will call it the ‘low contrast
of conductivities’ domain).

3. Regular composites

In this section we perform the numerical calculation of the effective conductivity for the
following regular structures: (i) 2D three colour isotropic schemes with the ratio of the fractions
being equal to 1:1:1 (figures 1(c), 1(d), 1(e) and 1(f)); (ii) 2D two colour anisotropic schemes
with the ratio of the fractions being equal to 1:1 (figures 1(g) and 1(h)); (iii) 2D two colour
isotropic schemes with the ratio of the fractions being equal to n : m (figure 1(i)); (iv) 3D two
colour isotropic schemes with the ratio of the fractions being equal to 1:1. The 2D two colour
square and triangular checker boards (figures 1(a) and 1(b)) were used as a test case.

In section 3.1 the 2D structures are considered. The numerical algorithm is described in
section 3.1.1, the isotropic and anisotropic structures are considered in sections 3.1.2 and 3.1.3,
respectively. Section 3.1.4 treats the isotropic structures with different concentration of the
components. Finally, section 3.2 presents our results for a 3D checker board.

3.1. 2D composites

3.1.1. Numerical algorithm. The algorithm approximates the system of materially
continuous squares (or triangles) by a square (or correspondingly, triangular) network of
conducting wires. Each square (or triangle) is divided into M2 equal cells. The centre of
each cell is connected to the centres of four (or three) of the nearest neighbouring cells by
conducting wires. The resistance of the wire connecting the ith and j th cells is equal to
σi+σj
Aσiσj

, where σi and σj are the conductivities of the ith and j th cells respectively, M is the
number of grid points in the edge of each square (or triangle) and the coefficient A = 2 for
the square lattice andA = 2

√
3 for the triangular one. Translational symmetry of the problem

has been taken into account by choosing the periodical boundary condition for currents. The
symmetry planes (where they exist) of the problem have been taken into account to reduce
the computational time for solving the system of N linear algebraic equations. In the case of
square or triangular checker boards (figures 1(a) and 1(b)) N = 2M2; all the other structures
were constructed from equal triangles or squares. For example, for the hexagon structure
(figure 1(c)) N = 18M2.

To achieve higher accuracy we have implemented the following algorithm of calculation.
This algorithm is schematically illustrated in figure 1(j). Centers of the circles correspond to
the centres of the cubcells. Let us consider first the isolated object α (small square or triangle;
solid circles in figure 1(j)). The number of edge subcells isNsurface while the number of internal
subcells is Nbulk. The total number of subcells Nall = Nsurf + Nbulk = n2. The voltage in the
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centre of the ith edge subcell is Vi , and the voltage in the centre of the j th bulk subcell is Ũj .
One can solve the system of NallNbulk equations and express Ũj via Ui in the form

Ũj =
Nsurf∑
i=1

AjiUi j = 1, 2, . . . , Nbulk. (5)

Using matrix Aij one can express the current Ii which come from outside the object into
the ith edge subcells in the form

Ii =
Nsurf∑
i=1

BijUj j = 1, 2, . . . , Nsurf . (6)

In the next step we construct the object β (open circles in figure 1(j)) from the object α for
which we know the dependence of equation (6). Therefore in this step we do not consider the
internal subcells of the object α and drastically reduce the number of equations to be solved.

This procedure can be repeated several times to obtain the maximal efficiency. In the
computer code developed the small square (or triangle) is used to construct the middle ones.
The middle square in its turn is used to calculate the matrix from equation (6) for the big one.
The big square (or triangle) is used to construct the subpart of the colour schemes, for example
the hexagon, and the hexagon is used to construct the colour scheme presented in figure 1(c).
To calculate the effective conductivity for another set of σ1, σ2 and σ3 one does not need to
repeat all the procedure, one needs to repeat only the last step.

Using this step-by-step algorithm we have achieved the maximal efficiency. This means
that the size of the program is kept minimal as well as computation time. The efficiency of
this algorithm compared with the traditional one is tested in the case of the program which
allocates operative memory which is necessary to keep the matrix of 2500 × 2500 equations
(50 MByte). The optimized code use exactly the same size of memory. This algorithm allows
us to increase the number of grid points by 50–200 times (with about the same computation
time).

3.1.2. Isotropic n-colour case. Comparison of the numerical results for square and triangular
checker boards (figures 1(a) and 1(b)) with the exact [4] solution shows that our computational
algorithm gives an effective conductivity �N which monotonically approaches (for N → ∞)
to the exact value of conductivity from below, e.g., δσ → 0 for N → ∞. Here
δσ (N) = σeff − �N is a deviation of the numerical lower bound from the exact solution.
Moreover, the dependence of δσ (N) onN has a linear form in a log–log plot. This means that
δσ can be presented in the following form:

δσ (N) = α

Nβ
. (7)

To find the upper bound we have used the consequence of duality of the 2D problem [6]:

σeff(σ
−1
1 , σ−1

2 , . . . , σ−1
n )σeff(σ1, σ2, . . . , σn) = 1 (8)

Our algorithm being applied directly to the problem with conductivities 1/σ1, 1/σ2 and
1/σ3 gives the lower bound for the value 1/σeff and thus the upper bound for the value σeff

itself. Thus

σ (−)(N) = �N(σ1, σ2, σ3, . . .) σ (+)(N) = 1/�N

(
1

σ1
,

1

σ2
,

1

σ3
, . . .

)
(9)

where σ (−) and σ (+) are the lower and the upper bounds respectively, �N is the numerical
result for the numberN of subcells. These bounds are independent because the deviation from
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the exact solution which originates from the changing of the continuous case on the network,
is different for different values of σ1, σ2 and σ3.

The results of calculation for isotropic 2D three component composites (hexagon—
figure 1(c), rhombus—figure 1(d), cogrose—figure 1(e)—and flowers—figure 1(f)) are
presented in figure 3(a). While both upper and lower boundaries are presented, sometimes it is
difficult to distinguish them because of a very high accuracy of the calculation. The coordinates
of point O are (σ1, σ2, σ3) = (0.001, 0.001, 1), point A has the coordinates (0.5, 0.5, 1), point B
has the coordinates (0.999, 0.001, 1) (for directions OB and AB) or (1, 0.001, 1) (for a direction
CB) and point C has the coordinates (1, 1, 1). Let us note here that the knowledge of σeff for all
the points within the triangle OBC (strictly speaking, for the values 0 � σ1 � 1, 0 � σ2 � σ1,
σ3 = 1) solve the problem for all the possible values of (σ1, σ2, σ3). Indeed, because of
invariancy to permutations, we can rearrange and rename the conductivities in such a manner
that σ2 � σ1 � σ3. Using the property of the homogeneity of the first order one obtains:

σeff = σeff(σ1, σ2, σ3) = σ3σeff(σ1/σ3, σ2/σ3, 1) (10)

where 0 � σ1/σ3 � 1, 0 � σ2/σ3 � σ1/σ3, and 1 = 1.
One can see from figure 3(a) that near the points O, A and C the effective conductivities for

different structures are practically coincide. The universal behaviour of σeff can be easily seen
from figure 3(b), which presents the σeff/σ0 ratio. One can clearly see that near the points O, A
and C the simple formula for σ0 describes very well (σeff/σ0 ≈ 1) the effective conductivity for
all the investigated structures. The points A and C can be characterized qualitatively as points
of ‘low contrast’. This means that the different structures behave universally if the contrast
between the properties of the component is small. The exact meaning of the word ‘small’
depends on the accuracy we are looking for. The shadowed area in figure 4 schematically
presents the area of the universal behaviour. At the same time, this area corresponds to the
area of validity of equation (4).

3.1.3. Anisotropic two colour case. To find the upper bound in the case of a two colour
anisotropic sample (figures 1(g) and 1(h)) we have used Keller’s result [6]. Thus, the lower
(σ (−)xx and σ (−)yy ) and upper (σ (+)xx and σ (+)yy ) bounds for the exact principal values have the form

σ (−)xx (N) = �N
xx(σ1, σ2) σ (+)xx (N) = σ1σ2/�

N
yy(σ2, σ1) (11)

σ (−)yy (N) = �N
yy(σ1, σ2) σ (+)yy (N) = σ1σ2/�

N
xx(σ2, σ1). (12)

To analyse the results for anisotropic structures, let us introduce the following notations:

f (σ1/σ2) = σyy(σ1, σ2)/σ0. (13)

To describe the conductivity tensor for all the values of σ1 and σ2 one needs to know the
value of f (γ ) function for 0 � γ � 1 only, where γ = σ1/σ2. Indeed, using the symmetry
relation one obtains

for σ1 � σ2

{
σxx = √

σ1σ2/f (σ1/σ2)

σyy = √
σ1σ2f (σ1/σ2)

(14)

for σ1 � σ2

{
σxx = √

σ1σ2/f (σ2/σ1)

σyy = √
σ1σ2f (σ2/σ1).

(15)

Thus, fxx(γ ) = 1/f (γ ) and fyy(γ ) = f (γ ) show the relative deviations of the σxx and
σyy , respectively, from the isotropic case. Figure 5(a) presents the calculated lower and upper
bounds for fxx and fyy for the rectang structure with Ny : Nx = 20 : 1. The solid line
corresponds to the isotropic case. HereNx andNy are the lengths of the edges of the rectangle
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Figure 3. (a) Lower and upper bounds of the calculated effective conductivity for hexagon,
rhombus, cogrose and flowers structures. In the figure the bounds coincide on the figure
because of the high accuracy of the calculation. Curves are added to lead the eye. (b) Ratio
σeff/σ0. The straight line corresponds to σeff = σ0.

(see figure 1(h) and table 1) in Ox and Oy directions, respectively. Figure 5(b) shows the
deviation from isotropic behaviour (f (γ )− 1) for the rectang structure with different ratios
ε = Ny/Nx as well as for the deformd structure. The curves in figure 5(b) are (from lower
to upper curves) deformed, rectang with ε = 1.333, 1.5, 1.667, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8,
10, 15 and 20. Here f (γ ) = (fmin + fmax)/2 and fmin and fmax are the calculated lower and
upper bounds for f (γ ). The function f (γ, ε) for the values of ε < 1 can be obtained from
the following equation:

f (γ, ε) = 1/f (γ, 1/ε). (16)
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Figure 4. The schematic view of the area (grey) of the universal behaviour of σeff for 2D three
component regular composites.

Table 1. The maximal number of grid points used in the calculations with optimization for different
structures and geometries.

rectang fractin rectang

Structure Nmax Nx Ny Nmax Nmax Nx Ny Nmax

hexagon 952 200 1 2 345 744 166 464 1 20 51 840
rhombus 238 050 1 3 290 400 97 344 2 3 164 268
cogrose 78 408 1 4 236 672 62 500 2 5 98 000
flowers 232 974 1 5 196 000 44 100 2 7 72 828
squares 236 672 1 6 164 268 33 124 3 4 80 736
triangl 320 000 1 7 145 656 25 600 3 5 66 270
deformd 640 000 1 8 129 600 20 736

1 10 103 680 14 641
1 15 69 120 6 400

3.1.4. Isotropic two colour case with different concentrations of the components. To find
the upper bound in the case of isotropic sample but with different fractions of components
(see figure 1(i)) one obtains from [6] the following expressions for the lower and upper limits
σ (−)(N) and σ (+)(N):

σ (−)(N) = �N(σ1, σ2) σ (+)(N) = σ1σ2/�
N(σ2, σ1). (17)
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Figure 5. (a) Calculated lower and upper bounds for fxx and fyy in the rectang structure with
Ny : Nx = 20 : 1. The solid curve corresponds to the isotropic checker board. Curves are added to
lead the eye. (b) Deviation from the isotropic case f (γ )−1 for the rectang structure for different
ratios ε = Ny/Nx as well as for the deformd structure. Curves are added to lead the eye.

To analyse the results for structures with different concentrations of the components, let
us introduce the following notations:

f (σ1/σ2) = σeff/σ0(σ1, σ2) (18)

where n1 and n2 are the concentrations of the first and second components, respectively. The
first component is the small square with the edgeNx and the large square with the edgeNy ; the
second component is two equal rectangles with edges Nx and Ny (see figure 1(i) and table 1).

n1 = N2
x +N2

y

(Nx +Ny)2
n2 = 2NxNy

(Nx +Ny)2
. (19)
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To describe the conductivity for all the values of σ1 and σ2 one needs to know the value
of the f (γ ) function for 0 � γ � 1 only. Indeed, using the symmetry relation one obtains

for σ1 � σ2 σeff = σ
n1
1 σ

n2
2 f (σ1/σ2) (20)

for σ1 � σ2 σeff = σ
n1
1 σ

n2
2 /f (σ2/σ1). (21)

Figure 6(a) presents the calculated lower and upper bounds for f (γ ) for the fractin
structure with n1 = 0.802. The solid line corresponds to the usual checker board with
n1 = n2 = 0.5. Figure 6(b) shows the deviation from the equi-partioned case [1 − f (γ )] for
the fractin structure for different concentrations n1 = 0.556, 0.625, 0.680, 0.722, 0.755,
0.781, 0.802 and 0.835. Here f (γ ) = (fmin + fmax)/2, fmin and fmax are the calculated lower
and upper bounds for f (γ ).

Figures 3, 5 and 6 show that for the deviation from equation (4) is small within the range
of ‘low contrast’ of the components (0.2 � σ1/σ2 � 5). One can also see from figures 5 and 6
that the deviation itself from the isotropic and equi-partioned cases also looks to be similar
for different ε and n1. We hope that this similarity will stimulate further investigations of the
analytical properties of the regular composite materials.

3.2. 3D composite

The calculation algorithm can easily be generalized for the case of the 3D cubic checker board.
The only difference now is that the number of cells in each cube isM3; the number of nearest
neighbours is 6, the number of equations is N = 2M3 and the resistance of the wire between
the centres of the ith and j th cells isM σi+σj

2σiσj
. The maximal number ofN used in our calculation

is 13 718.
We found that the deviation of the numerical result for the 2D square checker board from

the exact solution δσ (N) can be presented according to equation (7). If one assumes the
same kind of dependence to be valid for the 3D checker board, one can estimate σ∞ from the
equation

σ∞ − σcalc(N) = α′/Nβ ′
(22)

where σ∞ is an extrapolated limit of the numerical solution for an infinite number of equations.
In figure 7(a) it is evident that the reasonable choice of σ∞ values allows us to present the
deviation σ∞ − σcalc(N) this way (linear form in a log–log plot) in the whole range of our
calculations (in three decades).

The exponent index β ′ (convergency factor) in equation (22) depends on the ratio of the
partial conductivities γ . For σ1 ≈ σ2 and γ ≈ 1 (‘low contrast’), the exponent β ′ is large
(see figure 7(b)) and the convergency is fast. This means that even rough 3D grid gives a
good approximation to the current distribution. In other words, a small difference in the
component geometry has a very small effect on the total effective conductivity. In the case of
large difference between the partial conductivities, e.g., γ � 1 or γ � 1 (‘high contrast’), the
exponent β ′ is small (see figure 7(b)). In this case the convergency is slow because a very fine
grid only allows us to describe well the current distribution. Therefore the sensitivity to the
components’ geometry increases with the increase of the difference in partial conductivities.
Let us note here that the exponent β ′ depends on ‘conductivity contrast’ the same way in
the case of 2D 3-component composite. The lowest value of β ′ is for the rhombus structure
for σ1 → 0 and σ2 ≈ σ3 = 0. The highest value of β ′ is for the hexagon structure and
σ1 ≈ σ2 ≈ σ3.

Figure 8(a) presents the σ∞ values (circles) for the 3D case in comparison with the exact
solution for the 2D case (dashed curve) as a function of γ = σ1/σ2. Figure 8(b) presents the
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Figure 6. (a) Calculated lower (solid circles) and upper (open circles) bounds for f (γ ) in the
fractin structure with n1 = 0.802. The solid line corresponds to n1 = n2 = 0.5. Curves are
added to lead the eye. (b) Deviation from the equi-partioned case 1 − f (γ ) for the fractin
structure for different concentration ratio of the first component n1. Curves are added to lead the
eye.

ratio f (γ ) = σeff/σ0, where f (γ ) is a function which expresses the above mentioned deviation
between 3D and 2D cases. Because of the symmetry relation f (γ ) = f (1/γ ) one needs to
calculate the function f (γ ) only for γ from 0 to 1. It was shown [7] that its asymptotic values
are f (0) = 2, f (1) = 1.

It is amazing to find out how close this 3D calculation is to the 2D case for the σ1/σ2 not
close to zero (see figure 8). Nevertheless it might be expected since a single layer of cubes
behaves exactly as a 2D checker board. Thus, the difference between 2D and 3D appears as
a result of layer interconnection only. In the 3D case σ∞ � √

σ1σ2 is in agreement with the
result of [8].
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Figure 7. (a) Deviation of the numerical result from the limiting value σ∞ for a 3D checker board
as a function of the number of equations for different values of γ . Triangles correspond to the case
of γ = 0.3, squares to γ = 0.5 and circles to γ = 0.7. (b) Exponent index β ′ (convergency factor)
for a 3D checker board. Convergency decreases for γ → 0.

4. Random composite media

In this section we consider a case of random distribution of the components. Unfortunately,
the present calculation algorithm cannot be applied for the random structures. In the case
of non-periodic structures the number of grid points N ∝ n3k3 (and the computation time,
respectively) inceases tremendously, where n is a number of grid points in the edge of one
domain, k is a number of quasi-random domains in the edge of one regular cell.

To test the validity of equation (4) in the random media we explore the experimental
conductivity and density data of the ZBLAN20 (0.53ZrF4–0.20BaF2–0.04LaF3–0.03AlF3–
0.20NaF, [3]) glassformer. Using equation (4) we estimate the concentration of the rigid phase
nrigid as a function of temperature [1] and compare it with nrigid obtained from the temperature
dependence of ZBLAN20 density. The agreement of these two independent experimental
results gives a valuable justification for equation (4) in the case of random media. Let us note
here that in glass-forming liquids the the ratio of the partial conductivities (e.g., ‘rigid’ and
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Figure 8. (a) Calculated effective conductivity for 3D (circles) and 2D (dashed curve) checker
boards as a function of γ = σ1/σ2. The dashed curve corresponds to the 2D case. (b) The deviation
function f (γ ) = σeff/σ0. The straight line corresponds to the 2D case.

‘fluid’ phases) might be very large. Thus for random isotropic media the domain of validity
of equation (4) might be even wider than for regular composites.

The supercooled melt has been considered by many recent theories [9] as a sort
of dynamically heterogeneous medium. Whatever the reason for the emergence of this
heterogeneity, the corresponding liquid on its nanometric scale can be presented as a composite
material with inclusions of greater rigidity (and probably of a higher density) [10, 11] which
live much longer than a reorientation time of an individual molecule [11]. Actually there
is, probably, a whole spectrum of local conductivities in glassifying liquid. But let us
consider for the sake of simplicity a glassformer in its nanometric scale being a mixture
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Figure 9. The calculated volume fraction nrigid of the rigid clusters in ZBLAN20 glass-forming
melts as a function of the temperature. Solid circles are obtained from the density data; open circles
correspond to the resistivity data.

of two components only. The first component is the ‘fluid-like’ one with the conductivity σfluid

and the volume fraction nfluid. The conductivity for this component may be extrapolated from
a high temperature region (Arrhenius [12, 13] behaviour) of the corresponding glassformer:
σfluid = Afluid

T
exp(Efluid

T
), where T is a temperature, Efluid is an activation energy of the liquid

state (in Kelvin) andAfluid is a material dependent constant. The second component consists of
the ‘rigid-like’ clusters of random form and size with conductivity σrigid and volume fraction
nrigid = 1−nrigid, where σrigid can be extracted from the glass behaviour below the glassification

temperature Tg in an analogous way: σrigid = Arigid

T
exp(Erigid

T
). Here Erigid is the activation

energy in the glassy state.
The volume fraction of the solid component nrigid can be obtained from the the equation (4)

and the extrapolated values of σrigid and σfluid as follows:

nrigid(T ) ≈ ln σfluid(T )− ln σeff(T )

ln σfluid(T )− ln σrigid(T )
. (23)

Another way to estimate nrigid is to use the density data. In both liquid and glassy states
the density is roughly a linear function of the temperature. If one assumes the density of both
‘rigid-like’ inclusions drigid and ‘fluid-like’ medium dfluid to be equal to the extrapolated values
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from the low and high temperature region respectively, one can estimate nrigid:

nrigid(T ) = d(T )− dfluid(T )

drigid(T )− dfluid(T )
(24)

where d(T ) is the experimentally measured density of the glassformer.
The result for nrigid(T ) of ZBLAN20 is presented in figure 9 as a function of temperature.

We have used the data by Hasz et al [3] on ZBLAN20’s conductivity and density. Unfortunately,
while the conductivity, which varies in orders, can be measured with precision, the density,
which varies by 20% only, is measured relatively less accurately. The agreement of
nsol obtained from conductivity and density data confirms the physical meaningfulness of
equations (23) and (24) and justifies the validity of equation (4).

5. Conclusions

We have found that for all the investigated regular structures (2D and 3D composites, two
and three component composites, isotropic and anisotropic composites, composites with equal
and different concentrations of components) there is a domain of a universal behaviour of
the effective conductivity. This domain can be qualitatively characterized as a range of ‘low
contrast’ of the partial conductivities. For this domain of universality we have suggested
an equation which gives a good approximation to the effective conductivity. Analysing the
experimental data on ZBLAN20 conductivity and density, we have found that the suggested
equation is valid for the random composites as well.
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